Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 10(12): 231471, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38126067

RESUMO

Social insects often display extreme variation in body size and morphology within the same colony. In many species, adult morphology is socially regulated by workers during larval development. While larval nutrition may play a role in this regulation, it is often difficult to identify precisely what larvae receive from rearing workers, especially when larvae are fed through social regurgitation. Across insects, juvenile hormone is a major regulator of development. In the ant Camponotus floridanus, this hormone is present in the socially regurgitated fluid of workers. We investigated the role the social transfer of juvenile hormone in the social regulation of development. To do this, we administered an artificial regurgitate to larvae through a newly developed handfeeding method that was or was not supplemented with juvenile hormone. Orally administered juvenile hormone increased the nutritional needs of larvae, allowing them to reach a larger size at pupation. Instead of causing them to grow faster, the juvenile hormone treatment extended larval developmental time, allowing them to accumulate resources over a longer period. Handfeeding ant larvae with juvenile hormone resulted in larger adult workers after metamorphosis, suggesting a role for socially transferred juvenile hormone in the colony-level regulation of worker size over colony maturation.

2.
Curr Opin Insect Sci ; 59: 101085, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454732

RESUMO

Social insects are known for reproductive and behavioral division of labor, but little attention has been paid to metabolic forms of division of labor. Metabolic division of labor is the partitioning of complementary metabolic tasks between individuals, and it is widespread in social insects. We define two forms of metabolic division of labor, homosynergetic and heterosynergetic, we pinpoint trophallaxis, trophic eggs, and cannibalism as the primary transfers underlying the homosynergetic form and discuss their evolution. We argue that homosynergetic metabolic division of labor underpins fundamental aspects of colony physiology and may be a necessary feature of superorganismal systems, impacting many life history traits. Investigating metabolic division of labor is necessary to understand major evolutionary transition(s) to superorganismality in social insects.

3.
Trends Ecol Evol ; 38(5): 446-458, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36543692

RESUMO

When biological material is transferred from one individual's body to another, as in ejaculate, eggs, and milk, secondary donor-produced molecules are often transferred along with the main cargo, and influence the physiology and fitness of the receiver. Both social and solitary animals exhibit such social transfers at certain life stages. The secondary, bioactive, and transfer-supporting components in socially transferred materials have evolved convergently to the point where they are used in applications across taxa and type of transfer. The composition of these materials is typically highly dynamic and context dependent, and their components drive the physiological and behavioral evolution of many taxa. Our establishment of the concept of socially transferred materials unifies this multidisciplinary topic and will benefit both theory and applications.


Assuntos
Comportamento Sexual Animal , Animais , Leite/química , Óvulo/química , Sêmen/química
4.
Philos Trans R Soc Lond B Biol Sci ; 376(1823): 20190728, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33678016

RESUMO

The exceptional longevity of social insect queens despite their lifelong high fecundity remains poorly understood in ageing biology. To gain insights into the mechanisms that might underlie ageing in social insects, we compared gene expression patterns between young and old castes (both queens and workers) across different lineages of social insects (two termite, two bee and two ant species). After global analyses, we paid particular attention to genes of the insulin/insulin-like growth factor 1 signalling (IIS)/target of rapamycin (TOR)/juvenile hormone (JH) network, which is well known to regulate lifespan and the trade-off between reproduction and somatic maintenance in solitary insects. Our results reveal a major role of the downstream components and target genes of this network (e.g. JH signalling, vitellogenins, major royal jelly proteins and immune genes) in affecting ageing and the caste-specific physiology of social insects, but an apparently lesser role of the upstream IIS/TOR signalling components. Together with a growing appreciation of the importance of such downstream targets, this leads us to propose the TI-J-LiFe (TOR/IIS-JH-Lifespan and Fecundity) network as a conceptual framework for understanding the mechanisms of ageing and fecundity in social insects and beyond. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'


Assuntos
Envelhecimento/genética , Formigas/fisiologia , Abelhas/fisiologia , Fertilidade/genética , Isópteros/fisiologia , Transcriptoma/fisiologia , Animais , Formigas/genética , Abelhas/genética , Perfilação da Expressão Gênica , Isópteros/genética , Especificidade da Espécie
5.
J Exp Biol ; 224(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33658241

RESUMO

During the evolution of social insects, not only did life-history traits diverge, with queens becoming highly fecund and long lived compared with their sterile workers, but also individual traits lost their importance compared with colony-level traits. In solitary animals, fecundity is largely influenced by female size, whereas in eusocial insects, colony size and queen number can affect the egg-laying rate. Here, we focused on the ant Temnothorax rugatulus, which exhibits two queen morphs varying in size and reproductive strategy, correlating with their colony's social organization. We experimentally tested the influence of social structure, colony and body size on queen fecundity and investigated links between body size, metabolic rate and survival under paraquat-induced oxidative stress. To gain insight into the molecular physiology underlying the alternative reproductive strategies, we analysed fat body transcriptomes. Per-queen egg production was lower in polygynous colonies when fecundity was limited by worker care. Colony size was a determinant of fecundity rather than body size or queen number, highlighting the super-organismal properties of these societies. The smaller microgynes were more frequently fed by workers and exhibited an increase in metabolic activity, yet they were similarly resistant to oxidative stress. Small queens differentially expressed metabolic genes in the fat body, indicating that shifts in molecular physiology and resource availability allow microgyne queens to compensate for their small size with a more active metabolism without paying increased mortality costs. We provide novel insights into how life-history traits and their associations were modified during social evolution and adapted to queen reproductive strategies.


Assuntos
Formigas , Características de História de Vida , Animais , Formigas/genética , Feminino , Fertilidade , Humanos , Insetos , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...